Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598343

RESUMO

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Assuntos
Callithrix , Retina , Humanos , Animais , Recém-Nascido , Callithrix/anatomia & histologia , Retina/metabolismo , Fóvea Central/fisiologia , Células Fotorreceptoras Retinianas Cones , Macaca , Mamíferos
2.
Proc Natl Acad Sci U S A ; 121(17): e2318849121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630714

RESUMO

Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target. At the end of the movement if the subject experienced an error but chose to withhold the corrective movement, only the first group received information about the sensory prediction error. We organized the P-cells based on the information content of their olivary input and found that in the group that received sensory information, the simple spikes were suppressed during fixation, then produced a burst before saccade onset in a direction consistent with assisting the movement. In the second group, the simple spikes were not suppressed during fixation but burst near saccade deceleration in a direction consistent with stopping the movement. Thus, the olive differentiated the P-cells based on whether they would receive sensory or motor information, and this defined their contributions to control of movements as well as holding still.


Assuntos
Cerebelo , Células de Purkinje , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos , Movimento
3.
mSystems ; : e0140523, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557130

RESUMO

The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.

4.
J Neuroendocrinol ; : e13397, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659185

RESUMO

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex, and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.

5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647221

RESUMO

A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications in anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g. thalamic subregions, etc.) derived from high-resolution Mean Apparent Propagator-MRI, T2W, and magnetization transfer ratio images ex vivo. We then confirmed the location and borders of these segmented regions in the MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within Analysis of Functional NeuroImages software. Tracing and validating these important deep brain structures in 3D will improve neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, functional MRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.

6.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607034

RESUMO

The aim of this article is to describe sustained myopic eye growth's effect on astrocyte cellular distribution and its association with inner retinal layer thicknesses. Astrocyte density and distribution, retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer (IPL) thicknesses were assessed using immunochemistry and spectral-domain optical coherence tomography on seventeen common marmoset retinas (Callithrix jacchus): six induced with myopia from 2 to 6 months of age (6-month-old myopes), three induced with myopia from 2 to 12 months of age (12-month-old myopes), five age-matched 6-month-old controls, and three age-matched 12-month-old controls. Untreated marmoset eyes grew normally, and both RNFL and IPL thicknesses did not change with age, with astrocyte numbers correlating to RNFL and IPL thicknesses in both control age groups. Myopic marmosets did not follow this trend and, instead, exhibited decreased astrocyte density, increased GFAP+ spatial coverage, and thinner RNFL and IPL, all of which worsened over time. Myopic changes in astrocyte density, GFAP+ spatial coverage and inner retinal layer thicknesses suggest astrocyte template reorganization during myopia development and progression which increased over time. Whether or not these changes are constructive or destructive to the retina still remains to be assessed.


Assuntos
Miopia , Células Ganglionares da Retina , Animais , Astrócitos , Fibras Nervosas , Retina , Tomografia de Coerência Óptica/métodos , Callithrix
7.
Front Cell Infect Microbiol ; 14: 1340017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465237

RESUMO

Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Tularemia , Animais , Humanos , Callithrix , Modelos Animais de Doenças , Tularemia/microbiologia
8.
Animals (Basel) ; 14(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38473175

RESUMO

Marmosets are routinely used in biomedical research, therefore there is an increasing need for updated reference intervals calculated using a large sample size, correct statistics, and considering different variables. Hematological and biochemical values from 472 healthy common marmosets sedated with alphaxalone were collected over a ten-year period (2013-2023). The variables assumed to have influenced the blood-based parameters were compared, i.e., sex, age, housing condition, pregnancy, and contraceptive use. Reference intervals were calculated based on observed percentiles without parametric assumptions, and with parametric assumptions following Box-Cox transformation. Juvenile marmosets showed increased ALP, phosphate, WBC, lymphocyte count, and basophil count and decreased levels of GGT and Fe compared to adults. Marmosets housed strictly indoors showed increased ALT and GGT levels and decreased levels of total bilirubin and neutrophil count compared to marmosets housed with outdoor access. Pregnant marmosets showed increased ALP, total bilirubin, neutrophil count, monocyte count, and basophil count, and decreased levels of AST, ALT, cholesterol, Fe, and lymphocyte count compared to non-pregnant marmosets. Etonogestrel contracepted marmosets showed decreased P-LCR compared to females who were not contracepted. Updated reference intervals will aid researchers and veterinarians in identifying physiological and pathological changes, as well as improve the reproducibility of research in this species.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38446290

RESUMO

PURPOSE: The common marmoset (Callithrix jacchus) provides an ideal model to study early development of primates, and an in vivo platform to validate conclusions from in vitro studies of human embryos and embryo models. Currently, however, no established staging atlas of marmoset embryonic development exists. Using high-resolution, longitudinal ultrasound scans on live pregnant marmosets, we present the first dynamic in vivo imaging of entire primate gestation beginning with attachment until the last day before birth. METHODS: Our study unveils the first dynamic images of an in vivo attached mammalian embryo developing in utero, and the intricacies of the delayed development period unique to the common marmoset amongst primates, revealing a window for somatic interventions. RESULTS: Established obstetric and embryologic measurements for each scan were used comparatively with the standardized Carnegie staging of human development to highlight similarities and differences. Our study also allows for tracking the development of major organs. We focus on the ontogeny of the primate heart and brain. Finally, input ultrasound images were used to train deep neural networks to accurately determine the gestational age. All our ultrasounds and staging data recording are posted online so that the atlas can be used as a community resource toward monitoring and managing marmoset breeding colonies. CONCLUSION: The temporal and spatial resolution of ultrasound achieved in this study demonstrates the promise of noninvasive imaging in the marmoset for the in vivo study of primate-specific aspects of embryonic and fetal development.

10.
Cell Rep Methods ; 4(2): 100709, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359822

RESUMO

We establish a reliable method for selectively delivering adeno-associated viral vectors (AAVs) across the blood-brain barrier (BBB) in the marmoset without the need for neurosurgical injection. We focally perturbed the BBB (∼1 × 2 mm) in area 8aD of the frontal cortex in four adult marmoset monkeys using low-intensity transcranial focused ultrasound aided by microbubbles. Within an hour of opening the BBB, either AAV2 or AAV9 was delivered systemically via tail-vein injection. In all four marmosets, fluorescence-encoded neurons were observed at the site of BBB perturbation, with AAV2 showing a sparse distribution of transduced neurons when compared to AAV9. The results are compared to direct intracortical injections of anterograde tracers into area 8aD and similar (albeit sparser) long-range connectivity was observed. With evidence of transduced neurons specific to the region of BBB opening as well as long-distance tracing, we establish a framework for focal noninvasive transgene delivery to the marmoset brain.


Assuntos
Encéfalo , Callithrix , Animais , Encéfalo/fisiologia , Barreira Hematoencefálica , Transgenes , Neurônios
11.
J Alzheimers Dis ; 98(1): 333-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393919

RESUMO

The first International Conference on Unconventional Animal Models of Alzheimer's Disease and Aging (UAMAA) took place on December 13-16, 2023, in Santiago, Chile. The Alzheimer's disease (AD) research field is currently in search for new and unconventional models that could hold greater translational potential than transgenic mouse models. Thus this UAMAA conference is timely and significant. The event consisted of 6 sessions with talks from 28 world-class scientists from all over the world. These animal models of interest include the degu (Octodon degu), the dog (Canis familiaris), and certain species of nonhuman primates that may better recapitulate neuropathology and cognitive impairments in human AD. Our conference has provided a formal forum to discuss and highlight new research directions, alternative animal models, and innovative approaches for the AD and aging research field.


Assuntos
Doença de Alzheimer , Octodon , Humanos , Camundongos , Animais , Cães , Doença de Alzheimer/patologia , Envelhecimento/patologia , Camundongos Transgênicos , Modelos Animais de Doenças
12.
J Comp Neurol ; 532(1): e25589, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289192

RESUMO

Retinoic acid-induced 1 (RAI1) encodes a transcriptional regulator critical for brain development and function. RAI1 haploinsufficiency in humans causes a syndromic autism spectrum disorder known as Smith-Magenis syndrome (SMS). The neuroanatomical distribution of RAI1 has not been quantitatively analyzed during the development of the prefrontal cortex, a brain region critical for cognitive function and social behaviors and commonly implicated in autism spectrum disorders, including SMS. Here, we performed comparative analyses to uncover the evolutionarily convergent and divergent expression profiles of RAI1 in major cell types during prefrontal cortex maturation in common marmoset monkeys (Callithrix jacchus) and mice (Mus musculus). We found that while RAI1 in both species is enriched in neurons, the percentage of excitatory neurons that express RAI1 is higher in newborn mice than in newborn marmosets. By contrast, RAI1 shows similar neural distribution in adult marmosets and adult mice. In marmosets, RAI1 is expressed in several primate-specific cell types, including intralaminar astrocytes and MEIS2-expressing prefrontal GABAergic neurons. At the molecular level, we discovered that RAI1 forms a protein complex with transcription factor 20 (TCF20), PHD finger protein 14 (PHF14), and high mobility group 20A (HMG20A) in the marmoset brain. In vitro assays in human cells revealed that TCF20 regulates RAI1 protein abundance. This work demonstrates that RAI1 expression and protein interactions are largely conserved but with some unique expression in primate-specific cells. The results also suggest that altered RAI1 abundance could contribute to disease features in disorders caused by TCF20 dosage imbalance.


Assuntos
Transtorno do Espectro Autista , Síndrome de Smith-Magenis , Transativadores , Animais , Camundongos , Transtorno do Espectro Autista/genética , Callithrix , Neurônios GABAérgicos , Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição/genética , Transativadores/genética
13.
Neurosci Lett ; 822: 137624, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38218321

RESUMO

Functional correspondences are known to exist within the brains of both human and non-human primates however, our understanding of this phenomenon remains largely incomplete. The examination of the topological characteristics inherent in whole-brain functional connectivity bears immense promise in elucidating shared as well as distinctive patterns across different species. In this investigation, we applied topological graph analysis to brain networks and scrutinized the congruencies and disparities within the connectomes of human and marmoset monkey brains. The findings brought to light noteworthy similarities in functional connectivity patterns distributed across the entire brain, with a particular emphasis on the dorsal attention network, default mode network and visual network. Moreover, we discerned unique neural connections between humans and marmosets during both resting and task-oriented states. In essence, our study reveals a combination of shared and divergent functional brain connections underlying spontaneous and specific cognitive functions across these two species.


Assuntos
Callithrix , Conectoma , Animais , Humanos , Mapeamento Encefálico , Vias Neurais , Imageamento por Ressonância Magnética , Encéfalo
14.
Am J Primatol ; 86(4): e23597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38239052

RESUMO

Human aging is associated with senescence of the hypothalamic-pituitary-adrenal (HPA) axis, leading to progressive dysregulation characterized by increased cortisol exposure. This key hormone is implicated in the pathogenesis of many age-related diseases. Common marmosets (Callithrix jacchus) display a wide spectrum of naturally occurring age-related pathologies that compare similarly to humans and are increasingly used as translational models of aging and age-related disease. Whether the marmoset HPA axis also shows senescence with increasing age is unknown. We analyzed hair cortisol concentration (HCC) across the lifespan of 50 captive common marmosets, ranging in age from approximately 2 months-14.5 years, via a cross-sectional design. Samples were processed and analyzed for cortisol using enzyme immunoassay. HCC ranged from 1416 to 15,343 pg/mg and was negatively correlated with age. We found significant main effects of age group (infant, adolescent, adult, aged, very aged) and sex on HCC, and no interaction effects. Infants had significantly higher levels of HCC compared with all other age groups. Females had higher HCC than males. There was no interaction between age and sex. These results suggest marmosets do not show dysregulation of the HPA axis with increasing age, as measured via HCC.


Assuntos
Callithrix , Hidrocortisona , Masculino , Feminino , Humanos , Animais , Callithrix/fisiologia , Longevidade , Sistema Hipotálamo-Hipofisário/fisiologia , Estudos Transversais , Sistema Hipófise-Suprarrenal/fisiologia
15.
Am J Primatol ; 86(4): e23596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192065

RESUMO

Salivary alpha-amylase (sAA) is an enzyme found in saliva and is considered a noninvasive biomarker for sympathetic nervous system activity. While a wide range of sAA activity in response to stress has been reported in nonhuman primates, the effects of stress on sAA activity in common marmosets are still unknown. We tested the hypothesis that advanced age and cognitive function may have an impact on stress-related sAA reactivity in marmosets. Thirteen marmosets (nine males and five females) had saliva samples collected during a stressful condition (manual restraint stress) at two different time points, with a 60-min interval. On the next day, the animals underwent the object recognition test (ORT, a type of cognitive test), and then oral examinations. The animals were categorized into two age groups: old (10-13 years), and very old (15-22 years). Irrespective of age, sAA levels showed a significant difference between T1 (mean 2.07 ± 0.86 U/mL) and T2 samples (mean 1.03 ± 0.67 U/mL), with higher values observed at T1 (p < 0.001). The intra-assay coefficients of variation (CV) for low and high sAA concentrations were 10.79% and 8.17%, respectively, while the interassay CVs for low and high sAA concentrations were 6.39% and 4.38%, respectively. Oral health issues were common but did not significantly impact sAA levels. The ORT indicated that the animals could recognize an object placed in the cage 6 h after familiarization. In conclusion, all marmosets showed a higher sAA concentration in the first saliva sample as compared to the second saliva sample collected 1 h later, indicating adaptation to stress. No significant differences in sAA levels were observed between sexes, ORT performance, or oral health. Our results indicate that autonomic responsivity and cognitive (memory) functions were preserved even in very old marmosets.


Assuntos
alfa-Amilases Salivares , Masculino , Feminino , Animais , Callithrix , Saúde Bucal , Saliva , Cognição , Estresse Psicológico , Hidrocortisona
16.
Acta Parasitol ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184509

RESUMO

PURPOSE: As a result of environmental imbalances of anthropogenic origin, the potential for transmission of parasites and viruses between different primates, including humans, might increase. Thus, parasitic studies have great relevance to primatology, which motivated us to conduct a literature review to synthesize the information available in American primates of the Callithrix genus. METHODS: We carried out the bibliographic search on the main groups of parasites (protozoa, helminths, arthropods, ectoparasites) and viruses found in Callithrix in Brazil in search platforms and consider all manuscript that appeared in search engines, published between the years 1910 and December 2022. In each selected article, the following information was recorded: the host species; parasite taxa; scientific classification of the parasite; host habitat (free-living, captive); diagnostic technique; state; and bibliographic reference. Data were tabulated and arranged in a parasite-host table. RESULTS: Some endemic genera, such as Callithrix, are widely distributed geographically across Brazil and have characteristics of adaptation to different habitats due to their flexibility in diet and behavior. These factors can make them subject to a greater diversity of parasites and viruses in the country. Here, we identified 68 parasitic taxa, belonging to the clades protozoa (n = 22), helminths (n = 34), ectoparasites (n = 7), and viruses (n = 5). Out of this total, 19 have zoonotic potential. Of the six existing marmoset species, Callithrix jacchus was the most frequent in studies, and Callithrix flaviceps did not have reports. All regions of the country had occurrences, mainly the Southeast, where 54% of the cases were reported. In 46% of the reported parasites and viruses, it was not possible to identify the corresponding species. CONCLUSION: We conclude that in part of the works the identification methods are not being specific, which makes it difficult to identify the species that affects Callithrix spp. Furthermore, the studies present geographic disparities, being concentrated in the southeast of the country, making it impossible to have a more uniform analysis of the findings. Thus, it is observed that information about parasites and viruses is incipient in the genus Callithrix in Brazil.

17.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260391

RESUMO

A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g., thalamic subregions, etc.) derived from the high-resolution MAP-MRI, T2W, and MTR images ex vivo. We then confirmed the location and borders of these segmented regions in MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within AFNI. Tracing and validating these important deep brain structures in 3D improves neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, fMRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.

18.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050176

RESUMO

Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.


Assuntos
Callithrix , Movimentos Sacádicos , Animais , Masculino , Feminino , Movimentos Oculares , Atenção/fisiologia , Macaca , Estimulação Luminosa
19.
Neurosci Lett ; 819: 137569, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000775

RESUMO

The common marmoset (Callithrix jacchus), a small South American monkey, is an important nonhuman primate model in the study of aging and age-related neurodegenerative disease, including Alzheimer's disease, Parkinson's disease, and related dementias. Thorough characterization of the wild type marmoset brain agingmodel, including biomarkers of aging and neural degeneration, will further the marmoset's utility in translational research. We measured serum concentration of four key biomarkers of neural degeneration [total tau (T-tau), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and ubiquitin C-terminal hydrolase-L1 (UCH-L1)] via single molecule array from 24 marmosets (female n = 13, male n = 11) ranging in age from 1.3 to 18.7 years. Aged marmosets (>7 years) had significantly higher GFAP, NfL, UCH-L1, and T-tau than adult marmosets. Sex differences were not detected for any of these biomarker concentrations. These data provide an important initial range of reference values for GFAP, NfL, T-tau, and UCH-L1 to evaluate aging and neural health in marmosets, as well as evaluation of therapeutics in clinical models of disease.


Assuntos
Callithrix , Doenças Neurodegenerativas , Animais , Masculino , Feminino , Biomarcadores , Encéfalo , Envelhecimento , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase
20.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950874

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Assuntos
Substância Branca , Animais , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Tálamo/diagnóstico por imagem , Macaca mulatta , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA